Relatively Relaxed Proximal Point Algorithms for Generalized Maximal Monotone Mappings and Douglas-Rachford Splitting Methods
نویسندگان
چکیده
The theory of maximal set-valued monotone mappings provide a powerful framework to the study of convex programming and variational inequalities. Based on the notion of relatively maximal relaxed monotonicity, the approximation solvability of a general class of inclusion problems is discussed, while generalizing most of investigations on weak convergence using the proximal point algorithm in a real Hilbert space setting. A well-known method of multipliers of constrained convex programming is a special case of the proximal point algorithm. The obtained results can be used to generalize the Yosida approximation, which, in turn, can be applied to generalize first-order evolution equations to the case of evolution inclusions. Furthermore, we observe that the Douglas-Rachford splitting method for finding the zero of the sum of two monotone operators is a specialization of the proximal point algorithm as well. This allows a further generalization and unification of a wide range of convex programming algorithms. Key–Words: Variational inclusion problems; Relatively maximal relaxed monotone mapping; Generalized resolvent
منابع مشابه
Relaxed Proximal Point Algorithms Based on A−maximal Relaxed Monotonicity Frameworks with Applications
Based on the A−maximal (m)−relaxed monotonicity frameworks, the approximation solvability of a general class of variational inclusion problems using the relaxed proximal point algorithm is explored, while generalizing most of the investigations, especially of Xu (2002) on strong convergence of modified version of the relaxed proximal point algorithm, Eckstein and Bertsekas (1992) on weak conver...
متن کاملHybrid Super-relaxed Proximal Point Algorithms and General Nonlinear Variational Inclusion Problems
First a general framework for a hybrid super-relaxed proximal point algorithm based on the notion of H-maximal monotonicity is introduced, and then the convergence analysis for solving a general class of nonlinear inclusion problems is explored. The framework developed in this communication is quite suitable to generalize first-order evolution equations based on the generalized nonlinear Yosida...
متن کاملCommon Zero Points of Two Finite Families of Maximal Monotone Operators via Proximal Point Algorithms
In this work, it is presented iterative schemes for achieving to common points of the solutions set of the system of generalized mixed equilibrium problems, solutions set of the variational inequality for an inverse-strongly monotone operator, common fixed points set of two infinite sequences of relatively nonexpansive mappings and common zero points set of two finite sequences of maximal monot...
متن کاملOn the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators
This paper shows, by means of a new type of operator called a splitting operator, that the Douglas-Rachford splitting method for finding a zero of the sum of two monotone operators is a special case of the proximal point algorithm. Therefore, applications of Douglas-Rachford splitting, such as the alternating direction method of multipliers for convex programming decomposition, are also special...
متن کاملA SYSTEM OF GENERALIZED VARIATIONAL INCLUSIONS INVOLVING G-eta-MONOTONE MAPPINGS
We introduce a new concept of general $G$-$eta$-monotone operator generalizing the general $(H,eta)$-monotone operator cite{arvar2, arvar1}, general $H-$ monotone operator cite{xiahuang} in Banach spaces, and also generalizing $G$-$eta$-monotone operator cite{zhang}, $(A, eta)$-monotone operator cite{verma2}, $A$-monotone operator cite{verma0}, $(H, eta)$-monotone operator cite{fanghuang}...
متن کامل